Rare-event Probability Estimation via Empirical Likelihood Maximization
نویسندگان
چکیده
We explore past and recent developments in rare-event probability estimation with a particular focus on a novel Monte Carlo technique – Empirical Likelihood Maximization (ELM). This is a versatile method that involves sampling from a sequence of densities using MCMC and maximizing an empirical likelihood. The quantity of interest, the probability of a given rare-event, is estimated by solving a convex optimization program related to likelihood maximization. Numerical experiments are performed using this new technique and benchmarks are given against existing robust algorithms and estimators.
منابع مشابه
The Development of Maximum Likelihood Estimation Approaches for Adaptive Estimation of Free Speed and Critical Density in Vehicle Freeways
The performance of many traffic control strategies depends on how much the traffic flow models have been accurately calibrated. One of the most applicable traffic flow model in traffic control and management is LWR or METANET model. Practically, key parameters in LWR model, including free flow speed and critical density, are parameterized using flow and speed measurements gathered by inductive ...
متن کاملMaximum Probability and Relative Entropy Maximization. Bayesian Maximum Probability and Empirical Likelihood
Works, briefly surveyed here, are concerned with two basic methods: Maximum Probability and Bayesian Maximum Probability; as well as with their asymptotic instances: Relative Entropy Maximization and Maximum Non-parametric Likelihood. Parametric and empirical extensions of the latter methods – Empirical Maximum Maximum Entropy and Empirical Likelihood – are also mentioned. The methods are viewe...
متن کاملPseudo–Empirical Likelihood Inference for Multiple Frame Surveys
This article presents a pseudo–empirical likelihood approach to inference for multiple-frame surveys. We establish a unified framework for point and interval estimation of finite population parameters, and show that inferences on the parameters of interest making effective use of different types of auxiliary population information can be conveniently carried out through the constrained maximiza...
متن کاملThe Development of Maximum Likelihood Estimation Approaches for Adaptive Estimation of Free Speed and Critical Density in Vehicle Freeways
The performance of many traffic control strategies depends on how much the traffic flow models are accurately calibrated. One of the most applicable traffic flow model in traffic control and management is LWR or METANET model. Practically, key parameters in LWR model, including free flow speed and critical density, are parameterized using flow and speed measurements gathered by inductive loop d...
متن کاملEstimation of Rare Event Probabilities Using Cross - Entropy
This paper deals with estimation of probabilities of rare events in static simulation models using a fast adaptive two-stage procedure based on importance sampling and Kullback-Liebler’s cross-entropy (CE). More specifically, at the first stage we estimate the optimal parameter vector in the importance sampling distribution using CE, and at the second stage we estimate the desired rare event pr...
متن کامل